Wednesday, 26 July 2017

Teknik Rata Rata Tertimbang Tertimbang


Data smoothing menghilangkan variasi acak dan menunjukkan tren dan komponen siklik. Inheren dalam pengumpulan data yang diambil dari waktu ke waktu adalah beberapa bentuk variasi acak. Ada metode untuk mengurangi pembatalan akibat variasi acak. Teknik yang sering digunakan dalam industri adalah merapikan. Teknik ini, jika diterapkan dengan benar, mengungkapkan secara lebih jelas tren yang mendasari, komponen musiman dan siklik. Ada dua kelompok metode pemulusan yang berbeda Metode Rata-rata Metode Pemulusan eksponensial Mengambil rata-rata adalah cara termudah untuk memperlancar data. Kami akan menyelidiki beberapa metode rata-rata, seperti rata-rata sederhana dari semua data terdahulu. Seorang manajer sebuah gudang ingin tahu berapa banyak pemasok tipikal menghasilkan 1000 unit dolar. Heshe mengambil sampel dari 12 pemasok, secara acak, mendapatkan hasil sebagai berikut: Rata-rata atau rata-rata data yang dihitung 10. Manajer memutuskan untuk menggunakan ini sebagai perkiraan pengeluaran pemasok biasa. Apakah ini perkiraan yang baik atau buruk Kesalahan kuadrat rata-rata adalah cara untuk menilai seberapa baik modelnya Kami akan menghitung kesalahan kuadrat rata-rata. Jumlah kesalahan sebenarnya dikeluarkan dikurangi taksiran jumlah. Kesalahan kuadrat adalah kesalahan di atas, kuadrat. SSE adalah jumlah kesalahan kuadrat. MSE adalah rata-rata kesalahan kuadrat. Hasil MSE misalnya Hasilnya adalah: Error dan Squared Errors Estimasi 10 Timbul pertanyaan: Bisakah kita menggunakan mean untuk meramalkan pendapatan jika kita menduga sebuah tren A melihat grafik di bawah ini menunjukkan dengan jelas bahwa kita seharusnya tidak melakukan ini. Rata-rata mempertimbangkan semua pengamatan di masa lalu secara merata. Singkatnya, kita nyatakan bahwa Rata-rata atau rata-rata sederhana dari semua pengamatan terakhir hanyalah perkiraan berguna untuk memperkirakan kapan tidak ada tren. Jika ada tren, gunakan perkiraan berbeda yang memperhitungkan tren. Rata-rata beratnya semua pengamatan terakhir sama. Sebagai contoh, rata-rata nilai 3, 4, 5 adalah 4. Kita tahu, tentu saja, bahwa rata-rata dihitung dengan menambahkan semua nilai dan membagi jumlah dengan jumlah nilai. Cara lain untuk menghitung rata-rata adalah dengan menambahkan setiap nilai dibagi dengan jumlah nilai, atau 33 43 53 1 1.3333 1.6667 4. Pengganda 13 disebut berat. Secara umum: bar frac sum kiri (frac kanan) x1 kiri (frac kanan) x2,. ,, Kiri (frac kanan) xn. The (left (frac right)) adalah bobot dan, tentu saja, jumlahnya akan mendekati 1.What0 adalah perbedaan antara rata-rata bergerak dan rata-rata pergerakan tertimbang Rata-rata pergerakan 5 periode, berdasarkan harga di atas, akan dihitung dengan menggunakan yang berikut Rumus: Berdasarkan persamaan di atas, harga rata-rata selama periode yang tercantum di atas adalah 90,66. Menggunakan moving averages adalah metode efektif untuk menghilangkan fluktuasi harga yang kuat. Keterbatasan utamanya adalah bahwa titik data dari data lama tidak berbobot berbeda dari titik data di dekat awal kumpulan data. Di sinilah bobot rata-rata tertimbang mulai dimainkan. Rata-rata tertimbang menetapkan bobot yang lebih berat ke titik data lebih saat ini karena lebih relevan daripada titik data di masa lalu yang jauh. Jumlah pembobotan harus menambahkan hingga 1 (atau 100). Dalam kasus rata-rata bergerak sederhana, pembobotan didistribusikan secara merata, oleh karena itu tidak ditunjukkan pada tabel di atas. Harga Penutupan AAPLWeighted Moving Averages: Dasar-dasar Selama bertahun-tahun, teknisi telah menemukan dua masalah dengan rata-rata pergerakan sederhana. Masalah pertama terletak pada kerangka waktu moving average (MA). Sebagian besar analis teknikal percaya bahwa aksi harga. Harga saham pembukaan atau penutupan, tidak cukup untuk mengandalkan prediksi apakah membeli atau menjual sinyal dari tindakan crossover MA. Untuk mengatasi masalah ini, analis sekarang menetapkan bobot lebih banyak pada data harga terbaru dengan menggunakan rata-rata pergerakan rata-rata yang dipercepat secara eksponensial (EMA). (Pelajari lebih lanjut dalam Menjelajahi Nilai Pindah Yang Dipengaruhi Secara Eksponensial) Contoh Misalnya, menggunakan MA 10 hari, seorang analis akan mengambil harga penutupan pada hari ke 10 dan memperbanyak angka ini dengan angka 10, hari kesembilan dengan pukul sembilan, kedelapan Hari ke delapan dan seterusnya ke MA yang pertama. Setelah total telah ditentukan, analis kemudian akan membagi jumlahnya dengan penambahan pengganda. Jika Anda menambahkan pengganda contoh MA 10 hari, jumlahnya adalah 55. Indikator ini dikenal sebagai rata-rata bergerak tertimbang linear. (Untuk bacaan terkait, lihat Simple Moving Averages Making Trends Stand Out.) Banyak teknisi percaya diri dengan rata-rata moving average yang dipercepat secara eksponensial (EMA). Indikator ini telah dijelaskan dengan berbagai cara sehingga membingungkan para siswa dan investor. Mungkin penjelasan terbaiknya berasal dari John J. Murphys Technical Analysis Of The Financial Markets, (diterbitkan oleh New York Institute of Finance, 1999): Rata-rata moving average yang dipercepat secara eksponensial membahas kedua masalah yang terkait dengan moving average sederhana. Pertama, rata-rata merapikan secara eksponensial memberi bobot lebih besar pada data yang lebih baru. Oleh karena itu, ini adalah rata-rata bergerak tertimbang. Tapi sementara itu memberi informasi yang kurang penting untuk data harga terakhir, itu termasuk dalam perhitungan semua data dalam kehidupan instrumen. Selain itu, pengguna dapat menyesuaikan bobot untuk memberi bobot lebih besar atau lebih kecil ke harga hari terakhir, yang ditambahkan ke persentase nilai hari sebelumnya. Jumlah dari kedua nilai persentase tersebut menambahkan hingga 100. Misalnya, harga hari terakhir dapat diberi bobot 10 (0,10), yang ditambahkan ke hari sebelumnya dengan berat 90 (0,90). Ini memberi hari terakhir 10 dari total bobot. Ini setara dengan rata-rata 20 hari, dengan memberikan harga hari terakhir dengan nilai lebih kecil dari 5 (0,05). Gambar 1: Rata-rata Moving Exponentially Moving Bagan di atas menunjukkan Indeks Komposit Nasdaq dari minggu pertama di bulan Agustus 2000 sampai 1 Juni 2001. Seperti yang dapat Anda lihat dengan jelas, EMA, yang dalam kasus ini menggunakan data harga penutupan selama suatu Periode sembilan hari, memiliki sinyal jual yang pasti pada 8 September (ditandai dengan panah bawah hitam). Ini adalah hari dimana indeks menembus di bawah level 4.000. Panah hitam kedua menunjukkan kaki lain yang benar-benar diharapkan teknisi. Nasdaq tidak bisa menghasilkan volume dan minat yang cukup dari para investor ritel untuk menembus angka 3.000. Kemudian turun lagi ke bawah pada 1619.58 pada 4 April. Uptrend 12 Apr ditandai dengan panah. Di sini indeks ditutup pada 1.961,46, dan teknisi mulai melihat fund manager institusional mulai mengambil beberapa penawaran seperti Cisco, Microsoft dan beberapa isu terkait energi. (Baca artikel terkait kami: Memindahkan Amplop Rata-rata: Menyempurnakan Alat Perdagangan Populer dan Memindahkan Rata-rata Bounce.)

No comments:

Post a Comment